Tuesday, January 22, 2013

Big Sunspot Unleashes Intense Solar Flare


The surface of the sun erupted in a solar flare early today (Jan. 11), unleashing a blast of super-heated plasma into space.
A huge sunspot known as AR1654 produced the M1-class flare at 4:11 a.m. EST (0911 GMT), officials with NASA's Solar Dynamics Observatory said in a description of the event. The SDO spacecraft is one of several sun-watching space telescopes keeping tabs on solar flares and other sun weather events.
According to Spaceweather.com, sunspot AR1654 is growing more active and is now "crackling with M-class solar flares" like the one that erupted today.
"AR1654 is getting bigger as it turns toward Earth," the website reported. "Not only is the chance of flares increasing, but also the chance of an Earth-directed eruption.This could be the sunspot that breaks the recent lengthy spell of calm space weather around our planet."
The sun is in an active phase of its current 11-year weather cycle, which scientists call Solar Cycle 24. The sun's activity cycle is expected to reach its peak (or "solar maximum") in 2013, astronomers have said. 
The most powerful solar flares, X-class flares, have the most significant effect on Earth. They can cause long-lasting radiation storms in our planet's upper atmosphere and trigger radio blackouts.
Medium-size M-class flares can cause brief radio blackouts in the polar regions and occasional minor radiation storms. C-class flares, the weakest in scientists' three-tiered classification system, have few noticeable consequences.
Follow SPACE.com on Twitter @Spacedotcom. We're also on Facebook & Google+.
Copyright 2013 SPACE.com, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.
http://news.yahoo.com/big-sunspot-unleashes-intense-solar-flare-230223482.html



Sun Eruption May Boost Northern Lights This Week




A huge sun eruption on Sunday (Jan. 13) unleashed a wave of solar plasma aimed at Earth that may amplify the planet's northern lights displays later this week, NASA scientists say.
The solar eruption, called a coronal mass ejection (CME), occurred at 2:24 a.m. EST (0724 GMT) on Sunday and should take about three days to reach Earth, researchers said. The space weather event is not strong enough to interfere with satellites or electrical systems on Earth, they added.
Observations from NASA's twin Solar Terrestrial Relations Observatory spacecraft the Solar and Heliospheric Observatory showed that the CME shot away from sun at speeds of 275 miles per second — about 990,000 mph (1.6 million kilometers per hour).
Solar storms of this speed are fairly typical and have not caused substantial geomagnetic storms in the past, NASA officials said in a statement. Geomagnetic storms occur when the charged solar particles interact with the Earth's Earth's magnetic field, which can cause problems for satellites, communications, and power grids.
But solar storms similar to Sunday's eruption can produce supercharged northern and southern lights at the Earth's poles, NASA officials said.
The sun is in an active phase of its current 11-year weather cycle, which scientists call Solar Cycle 24. The sun's activity cycle is expected to reach its peak this year.
Two particularly active sunspot regions, called AR 11652 and AR 11654, have produced four low-level M-class flares since Jan. 11, space weather officials said. The most powerful solar flares, X-class flares, have the most significant effect on Earth. They can cause long-lasting radiation storms in our planet's upper atmosphere and trigger radio blackouts.
Medium-size M-class flares can cause brief radio blackouts in the polar regions and occasional minor radiation storms. C-class flares, the weakest in scientists' three-tiered classification system, have few noticeable consequences.


Follow SPACE.com on Twitter @Spacedotcom. We're also on Facebook and Google+.

This triptych shows a coronal mass ejection or CME as it burst off of the sun in the morning of Jan. 13, 2013. The images were captured by NASA's Solar Terrestrial Relations Observatory (STEREO).

Diamonds Created from Human Ashes


Diamonds Created from Human Ashes

Memorial Diamonds Can be Made from Human Ashes

By , About.com Guide




Synthetic diamonds aren't new. Gem quality diamonds have been made in labs for some time and are showing up in many jewelry company catalogs. But since 2001, LifeGem (TM), an Illinois company, has offered a unique twist on synthetic diamond creation -- it makes memorial diamonds from carbon that's captured during the cremation of human remains, and more recently from locks of hair.
Memorial diamonds won't appeal to everyone, and the pricing for such unique gemstones could be a downside for many, but the company has found that an increasing number of people are opting in to the program. The diamonds give family members a lasting memento, one that's beautiful and can be worn continuously.

Getting the Carbon from Human Ashes

LifeGem recommends you use one of their certified cremation facilities for best results, but the company says it can nearly always retrieve enough carbon to make diamonds from previously cremated individuals, even if the cremation occurred years ago.
Dozens of stones can be made from the ashes of one person. The size selection is currently 0.25 to over 1.5 carats, up from a maximum of 1.3 carats when this article was originally written in 2004.Diamond prices have decreased since the company was formed, so check LifeGem's Web site for current details.
The LifeGem process gathers only the carbon produced during cremation. The family will still receive ashes of each individual.

Memorial Diamonds from Hair

Memorial diamonds can also be created from a lock of hair, and that choice is one that we could make before death, resulting in a gift that would be more acceptable to family members who might resist wearing a diamond made from ashes.

Skeptical?

LifeGem has an open door policy, allowing you to inspect many aspects of their tracking system. The system follows all remains throughout the entire process, from cremation to faceting. They also offer an advanced type of system that uses special markers to track remains.

Diamonds From Pets?

Yes, the company can produce diamonds from your pet's remains.

Diamond Quality

LifeGem says that its overall quality target is to produce gems at the VVS clarity level (very, very slightly included; very, very slightly imperfect). Ask about current abilities, because the process appears to be improving as the years go by..
Wearing diamonds from ashes is not something that everyone feels comfortable with, but LifeGem has indeed developed a unique memorial option, and at least one other company is creating similar diamonds outside the United States.


LifeGem Memorial Diamonds

The LifeGem® is...

• A certified, high-quality diamond created from a lock of hair or the cremated ashes of your loved one as a memorial to their unique life.
Over 4,000...The number of people who have their very own LifeGem diamond to date. 
• A way to embrace your loved one's memory day by day.

• The most beautiful cremation jewelry keepsake available for honoring their unique life.

• Comfort and support when and where you need it.

Your LifeGem memorial will provide a lasting memory that endures just as a diamond does. Forever.
Love. Life’s single greatest risk. Life’s single greatest reward. Love captures your heart in a second and holds it for eternity. You have experienced a love without equal.
You have had someone truly special in your life and mere words simply will not do.
Your very own LifeGem diamond(s) can be created from the carbon in cremation ashes, a lock of hair, or both. Of course, not only do we turn ashes into diamonds and hair into diamonds, we also have a full line of cremation jewelryrings, and pendants to accent your beautiful LifeGem cremation diamond.

http://www.lifegem.com/


Dear Rusty,
Well, I have my diamond and I can't thank you enough. It is much more beautiful than I could have imagined. Knowing that my Mother is in the stone and I can take her with me is an awesome feeling.
I took it to the jewelers today and he was astounded at the cleanness and depth of color. He did a diamond test on it and he could not believe that it tested as a diamond. This diamond is so fantastic and beautiful I just can't thank you enough.

I hope my experience will help others to decide that this is a fantastic way to preserve the memory and ashes of their loved ones.Warmly,

Laura Curtin (Daughter ) 




Translation:


Los diamantes sintéticos no son nuevos. Diamantes de calidad gema se han hecho en los laboratorios desde hace algún tiempo y se están presentando en muchos catálogos de joyería de la compañía. Pero desde 2001, LifeGem (TM), una compañía de Illinois, ha ofrecido un giro único en la creación de diamantes sintéticos - que hace que los diamantes conmemorativos de carbono que se captura durante la cremación de los restos humanos, y más recientemente de mechones de pelo.
Memorial diamantes no será de interés para todos, y la fijación de precios para tales piedras preciosas únicas podría ser un inconveniente para muchos, pero la compañía ha encontrado que un número creciente de personas están optando en el programa. Los diamantes dan los familiares una duración de un recuerdo, eso es hermoso y se puede usar de forma continua.
Conseguir el carbono de las cenizas humanas

LifeGem recomienda el uso de una de sus instalaciones de cremación certificados para obtener los mejores resultados, pero la compañía dice que puede recuperar casi siempre suficiente carbono para hacer diamantes de individuos previamente cremados, aunque la cremación tuvo lugar años atrás.
Decenas de piedras se pueden hacer de las cenizas de una persona. La selección del tamaño es actualmente de 0,25 a más de 1,5 quilates, frente a un máximo de 1,3 quilates cuando este artículo fue escrito originalmente en los precios 2004.Diamond han disminuido desde que se formó la compañía, así que consulte el sitio Web de LifeGem para los detalles actuales.
El proceso LifeGem reúne sólo el carbono producido durante la cremación. La familia seguirá recibiendo cenizas de cada individuo.
Diamantes Memorial de pelo

Memorial diamantes también se pueden crear a partir de un mechón de pelo, y esa opción es la que podríamos hacer antes de morir, lo que resulta en un regalo que sería más aceptable para los miembros de la familia que pueden resistir usar un diamante hecha de cenizas.
Escéptico?

LifeGem tiene una política de puertas abiertas, lo que le permite inspeccionar muchos aspectos de su sistema de seguimiento. El sistema sigue siendo todo a lo largo de todo el proceso, desde la cremación de facetas. También ofrecen un tipo avanzado de sistema que utiliza marcadores especiales para rastrear restos.
Los diamantes de las mascotas?

Sí, la empresa puede producir diamantes a partir de restos de su mascota.
Diamond Calidad

LifeGem dice que su objetivo general de calidad es producir piedras en el nivel de claridad VVS (muy, muy levemente incluido, muy, muy levemente imperfecto). Pregunte acerca de las capacidades actuales, debido a que el proceso parece estar mejorando a medida que pasan los años ..
Usar diamantes a partir de cenizas no es algo que todo el mundo se siente cómodo, pero de hecho ha desarrollado LifeGem una opción monumento único, y por lo menos una otra compañía es la creación de diamantes similares fuera de los Estados Unidos.

-----------------------French


Les diamants synthétiques ne sont pas nouvelles. Diamants de qualité gemme ont été réalisés dans les laboratoires pour un certain temps et se révèlent dans de nombreux catalogues de la société de bijoux. Mais depuis 2001, LifeGem (TM), une société de l'Illinois, a offert une torsion unique sur la création de diamant synthétique - il fait diamants commémoratifs de carbone qui a capturés lors de la crémation de restes humains, et plus récemment à partir des mèches de cheveux.
Diamants commémoratifs ne plaira pas à tout le monde, et le prix pour ces pierres uniques pourrait être un inconvénient pour beaucoup, mais la société a constaté qu'un nombre croissant de personnes optent pour le programme. Les diamants donnent membres de la famille d'un souvenir durable, celle qui est belle et peut être porté en permanence.
Obtenir le carbone à partir de cendres de l'homme

LifeGem vous recommande d'utiliser un de leurs installations de crémation certifiés pour de meilleurs résultats, mais l'entreprise affirme qu'elle peut presque toujours récupérer assez de carbone pour faire des diamants provenant d'individus préalablement incinérés, même si la crémation produite des années auparavant.
Des dizaines de pierres peuvent être fabriqués à partir des cendres d'une personne. La sélection de la taille est actuellement de 0,25 à plus de 1,5 carats, contre un maximum de 1,3 carats quand cet article a été initialement écrit en 2004.Diamond prix ont diminué depuis que la société a été constituée, afin de vérifier le site Web pour plus de détails LifeGem actuelles.
Le processus de LifeGem ne recueille que le carbone produit durant la crémation. La famille recevra toujours les cendres de chaque individu.
Diamonds Memorial de cheveux

Diamants commémoratifs peuvent également être créés à partir d'une mèche de cheveux, et que ce choix est une que nous pourrions faire avant de mourir, ce qui entraîne un cadeau qui serait plus acceptable pour les membres de la famille qui pourrait résister portant un diamant fabriqué à partir de cendres.
Sceptique?

LifeGem a une politique de porte ouverte, ce qui vous permet de contrôler de nombreux aspects de leur système de suivi. Le système suit tout reste pendant tout le processus, de l'incinération à facettes. Ils offrent également un type avancé de système qui utilise des marqueurs spéciaux pour suivre les restes.
Diamonds From animaux de compagnie?

Oui, l'entreprise peut produire des diamants restes de votre animal.
Diamant Qualité

LifeGem dit que son objectif global de qualité est de produire des pierres précieuses au niveau de pureté VVS (très, très légèrement inclus, très, très légèrement imparfaite). Renseignez-vous sur les capacités actuelles, parce que le processus semble s'améliorer au fil des ans par ..
Le port de diamants à partir de cendres n'est pas quelque chose que tout le monde se sent à l'aise, mais LifeGem a en effet développé une option mémorial unique, et au moins une autre entreprise est de créer des diamants similaires en dehors des États-Unis.


----------------------German

Synthetische Diamanten sind nicht neu. Gem Qualität Diamanten haben in Labors seit einiger Zeit gemacht worden und zeigen sich in vielen Unternehmen für Schmuckwaren Katalogen. Aber seit 2001 hat LifeGem (TM), ein Illinois Unternehmen, eine einzigartige Torsion auf synthetischen Diamanten Erstellung angeboten - es macht memorial Diamanten aus Kohlenstoff, die bei der Verbrennung von menschlichen Überresten erfasst ist, und in jüngerer Zeit von Locken.
Memorial Diamanten nicht jedermanns Sache, und die Preise für diese einzigartige Edelsteine ​​könnte ein Nachteil für viele sein, aber das Unternehmen hat festgestellt, dass eine wachsende Zahl von Menschen sind in das Programm entscheiden. Die Diamanten geben Familienmitglieder eine bleibende Erinnerung, eine, die schön ist, und kann kontinuierlich getragen werden.
Erste das Carbon von Human Ashes

LifeGem empfiehlt die Verwendung eines ihrer zertifizierten Krematorien für die besten Ergebnisse, aber die Firma sagt, es kann fast immer abzurufen genug Kohlenstoff, um Diamanten aus zuvor eingeäschert Menschen machen, auch wenn die Verbrennung eingetreten Jahren.
Dutzende von Steinen aus der Asche einer Person vorgenommen werden. Die Größe Auswahl ist derzeit 0,25 auf über 1,5 Karat, aus einem Maximum von 1,3 Karat, wenn dieser Artikel wurde ursprünglich in 2004.Diamond Preisen geschrieben haben zurückgegangen, da das Unternehmen gegründet wurde, so überprüfen LifeGem Website für aktuelle Informationen.
Die LifeGem-Prozess sammelt nur die Kohlenstoff während Einäscherung produziert. Die Familie erhalten weiterhin Asche jedes Einzelnen.
Memorial Diamanten aus Haar

Memorial diamonds kann auch aus einer Haarlocke erstellt werden, und diese Wahl ist eine, die wir vor dem Tod zu machen, was zu einem Geschenk, das mehr akzeptabel für Familienangehörige, die zu widerstehen trägt einen Diamanten aus der Asche hat vielleicht würden.
Skeptisch?

LifeGem verfügt über eine Politik der offenen Tür, so dass Sie viele Aspekte ihrer Tracking-System zu untersuchen. Das System folgt alles bleibt während des gesamten Prozesses, von der Einäscherung zu Facettierung. Sie bieten auch eine erweiterte Art von System, das spezielle Marker verwendet, um Reste zu verfolgen.
Diamonds From Haustiere?

Ja, kann das Unternehmen Diamanten aus Ihrem Haustier die Überreste.
Diamant Qualität

LifeGem sagt, dass seine allgemeine Qualität Ziel Edelsteine ​​an der VVS Klarheit Ebene (sehr, sehr kleine Einschlüsse, sehr, sehr leicht unvollkommenen) produzieren. Informieren Sie sich über aktuelle Fähigkeiten, weil der Prozess scheint sich zu verbessern, wie die Jahre vergehen ..
Tragen Diamanten aus der Asche ist nicht etwas, dass jeder bequem mit anfühlt, aber LifeGem hat in der Tat ein einzigartiges Denkmal Option entwickelt, und mindestens ein anderes Unternehmen schafft ähnliche Diamanten außerhalb der Vereinigten Staaten.


Rusian


Синтетические алмазы не являются новыми. Алмазы ювелирного качества были сделаны в лаборатории в течение некоторого времени, и обнаруживаются во многих каталогах ювелирной компании. Но с 2001 года, LifeGem (TM), компания Иллинойс, предлагает уникальный поворот на синтетических алмазов создания - он делает памятник алмазы из углерода, которые захватили во время кремации человеческих останков, а в последнее время с прядями волос.
Мемориал алмазов не будет обращаться ко всем, и цены на такие уникальные драгоценные камни могли быть недостатком для многих, но компания обнаружила, что все большее число людей выбирают в программу. Бриллианты членов семьи прочного сувенир, который красиво и можно носить постоянно.
Получение углерода из человеческого пепла

LifeGem рекомендует использовать одну из своих сертифицированных средств кремации для достижения лучших результатов, но компания говорит, что может почти всегда получить достаточно углерода, чтобы алмазы из ранее кремировали лиц, даже если кремация имело место несколько лет назад.
Десятки камней могут быть сделаны из пепла одного человека. Выбор размера в настоящее время 0,25 до более 1,5 карат, по сравнению с максимумом в 1,3 карата, когда эта статья была первоначально написана на 2004.Diamond цены снизились, так как компания была сформирована, так что проверить веб-сайт LifeGem по текущему деталей.
Процесс LifeGem собирает только углерода, полученного во время кремации. Семья будет получать пепел каждого человека.
Мемориал Алмазы из волос

Мемориал алмазов также могут быть созданы с прядью волос, и этот выбор является тот, который мы могли бы сделать перед смертью, в результате подарок, который был бы более приемлемым для членов семьи, которые могли бы противостоять носить алмаз из пепла.
Скептически?

LifeGem имеет политику открытых дверей, что позволяет проверить многие аспекты их системы слежения. Система следит за всеми остается на протяжении всего процесса, начиная от кремации до огранки. Они также предлагают расширенный тип системы, которая использует специальные маркеры для отслеживания остатков.
Бриллианты от домашних животных?

Да, компания может производить алмазов из останков вашего питомца.
Алмазный качества

LifeGem говорит, что ее общей цели качества для производства драгоценных камней на уровне ВВС ясности (очень, очень немного включены; очень, очень незначительно несовершенная). Спросите о текущих способностях, потому что процесс по-видимому, улучшается, поскольку годы идут ..
Ношение бриллианты из пепла не то, что каждый чувствует себя комфортно, но LifeGem действительно разработали уникальный вариант памятника, и по крайней мере одна компания создает похожий алмазов за пределами Соединенных Штатов.

--------------------Hindi





सिंथेटिक हीरे नए नहीं हैं. मणि गुणवत्ता वाले हीरे से कुछ समय के लिए प्रयोगशालाओं में बनाया गया है और कई के गहने कंपनी सूची में दिखा. लेकिन 2001 के बाद से, (टीएम) LifeGem, एक इलिनोइस कंपनी, सिंथेटिक हीरे के निर्माण पर एक अद्वितीय मोड़ देने की पेशकश की है - यह स्मारक से कार्बन हीरे कि मानव अवशेषों के अंतिम संस्कार के दौरान कब्जा कर लिया है बनाता है, और बाल के ताले से अधिक हाल ही में.
मेमोरियल हीरे हर किसी को अपील नहीं, और ऐसे अद्वितीय रत्न के लिए मूल्य निर्धारण के अनेक लोगों के लिए एक नकारात्मक पहलू हो सकता है, लेकिन कंपनी ने पाया है कि लोगों की एक बढ़ती हुई संख्या में इस कार्यक्रम के लिए चयन कर रहे हैं. हीरे के परिवार के सदस्यों को एक स्थायी स्मृति चिन्ह एक है, कि सुंदर है और लगातार पहना जा सकता है दे.
कार्बन मानव राख से हो रही है

LifeGem की सिफारिश की है आप एक अपने सबसे अच्छे परिणामों के लिए प्रमाणित दाह संस्कार सुविधाओं का उपयोग करते हैं, लेकिन कंपनी का कहना है कि यह लगभग हमेशा पर्याप्त पहले दाह संस्कार व्यक्तियों से हीरे बनाने कार्बन को पुनः प्राप्त कर सकते हैं, यहां तक ​​कि अगर अंतिम संस्कार साल पहले हुई.
पत्थर के दर्जनों एक व्यक्ति की राख से बनाया जा सकता है. आकार चयन 0.25 वर्तमान में 1.5 से अधिक कैरेट का है, जब इस अनुच्छेद मूलतः 2004.Diamond कीमतों में लिखा गया था 1.3 कैरेट की एक अधिकतम से की कमी के बाद से कंपनी का गठन किया गया था, तो वर्तमान जानकारी के लिए है LifeGem वेब साइट की जाँच करें.
LifeGem प्रक्रिया केवल अंतिम संस्कार के दौरान उत्पादित कार्बन बटोरता. परिवार अभी भी प्रत्येक व्यक्ति की राख प्राप्त होगा.
बाल से मेमोरियल हीरे

मेमोरियल हीरे भी बालों की एक ताला से बनाया जा सकता है, और है कि चुनाव से एक है कि हम मृत्यु से पहले कर सकता है, जिसके परिणामस्वरूप एक उपहार है कि परिवार के सदस्यों के लिए जो एक राख से बनाया हीरे पहनने का विरोध हो सकता है अधिक स्वीकार्य होगा.
उलझन में?

LifeGem एक खुले द्वार की नीति है, आप अपने ट्रैकिंग प्रणाली के कई पहलुओं का निरीक्षण करने के लिए अनुमति देता है. प्रणाली इस प्रकार सब पूरी प्रक्रिया में रहता है, अंतिम संस्कार के से Faceting. उन्होंने यह भी प्रणाली के एक उन्नत प्रकार है कि विशेष मार्करों का उपयोग करता है के लिए रहता है ट्रैक की पेशकश.
पालतू जानवरों से हीरे?

हाँ, कंपनी अपने पालतू जानवरों के अवशेषों से हीरे का उत्पादन कर सकते हैं.
हीरा गुणवत्ता

LifeGem का कहना है कि अपने लक्ष्य समग्र गुणवत्ता वीवीएस स्पष्टता स्तर (बहुत, बहुत कुछ शामिल है, बहुत, बहुत थोड़ा अपूर्ण) में जवाहरात का उत्पादन होता है. वर्तमान क्षमताओं के बारे में पूछें, क्योंकि इस प्रक्रिया के रूप में वर्षों से सुधार होना प्रतीत होता है ..
राख से पहने हुए हीरे कुछ है कि हर किसी के साथ सहज महसूस नहीं है, लेकिन LifeGem वास्तव में एक अद्वितीय स्मारक विकल्प विकसित किया गया है, और कम से कम एक अन्य कंपनी के संयुक्त राज्य अमेरिका के बाहर इसी तरह हीरे पैदा कर रही है.


-------------------Ukrania


Синтетичні алмази не є новими. Алмази ювелірної якості були зроблені в лабораторії протягом деякого часу, і виявляються у багатьох каталогах ювелірної компанії. Але з 2001 року, LifeGem (TM), компанія Іллінойс, пропонує унікальний поворот на синтетичних алмазів створення - він робить пам'ятник алмази з вуглецю, які захопили під час кремації людських останків, а останнім часом з пасмами волосся.
Меморіал алмазів не буде звертатися до всіх, і ціни на такі унікальні дорогоцінні камені могли бути недоліком для багатьох, але компанія виявила, що все більше число людей вибирають в програму. Діаманти членів сім'ї міцного сувенір, який красиво і можна носити постійно.
Отримання вуглецю з людського попелу

LifeGem рекомендує використовувати одну зі своїх сертифікованих засобів кремації для досягнення кращих результатів, але компанія говорить, що може майже завжди отримати достатньо вуглецю, щоб алмази з раніше кремували осіб, навіть якщо кремація мало місце кілька років тому.
Десятки каменів можуть бути зроблені з попелу однієї людини. Вибір розміру в даний час 0,25 до більше 1,5 карат, в порівнянні з максимумом в 1,3 карата, коли ця стаття була спочатку написана на 2004.Diamond ціни знизилися, тому що компанія була сформована, так що перевірити веб-сайт LifeGem по поточному деталей.
Процес LifeGem збирає тільки вуглецю, отриманого під час кремації. Родина отримуватиме попіл кожної людини.
Меморіал Алмази з волосся

Меморіал алмазів також можуть бути створені з пасмом волосся, і цей вибір є той, який ми могли б зробити перед смертю, в результаті подарунок, який був би більш прийнятним для членів сім'ї, які могли б протистояти носити алмаз з попелу.
Скептично?

LifeGem має політику відкритих дверей, що дозволяє перевірити багато аспектів їх системи стеження. Система стежить за всіма залишається на протязі всього процесу, починаючи від кремації до огранки. Вони також пропонують розширений тип системи, яка використовує спеціальні маркери для відстеження залишків.
Діаманти від домашніх тварин?

Так, компанія може виробляти алмазів з рештків вашого вихованця.
Алмазний якості

LifeGem говорить, що її загальної мети якості для виробництва дорогоцінних каменів на рівні ВВС ясності (дуже, дуже небагато включені; дуже, дуже незначно недосконала). Запитайте про поточні здібностях, тому що процес по-видимому, поліпшується, оскільки роки йдуть ..
Носіння діаманти з попелу не те, що кожен відчуває себе комфортно, але LifeGem дійсно розробили унікальний варіант пам'ятника, і принаймні одна компанія створює схожий алмазів за межами Сполучених Штатів.




Man-made Diamonds

Hard pressed — the first synthetic diamonds

Claims of the conversion of carbon to diamond date back to 1880, but it was not until 1955 that the first reproducible synthesis was reported. Bundy et al. describe the high-pressure, high-temperature apparatus that enabled them to reach the stability field of diamond, and prove that the material obtained was indeed diamond. Ironically, some of the same authors discovered 38 years later that the very first diamond grown by their technique was not synthetic after all, but a fragment of a natural diamond that got into the experiment. Fortunately, however, the technique was sound, and marked the beginning of the present synthetic-diamond industry
Nature 176, 51–55 (1955) & 365, 19 (1993)
click here for a PDF version (1.1 M)|

Man-made Diamonds

By Drs. F. P. Bundy, H. T. Hall, H. M. Strong & R. H. Wentorf Jr

Research Laboratory, General Electric Company, Schenectady, New York
In the 1920's it was quite widely believed that diamond had been made from carbon under conditions of high heat and great pressure. The story was indeed one to capture the imagination. It involved famous chemists, a thoroughly fascinating subject and very striking experimental techniques.
In the recent past, however, informed scientists soberly agree that there has been no certain example of diamond production in the laboratory. More than a century of claims and counterclaims for the synthesis of diamond attest to the fascination of the subject and the extreme difficulty of the experimental techniques. Henri Moissan dissolved sugar charcoal in molten iron and quenched the solution in cold water in order to crystallize the carbon under the great internal pressure supposedly generated by contraction as the mass cooled from the outside. When the metal was dissolved from the solidified melt, there remained traces of transparent material having optical properties similar to those of diamond and giving some carbon dioxide upon combustion. Moissan therefore believed he had made diamond.
In 1880, J. B. Hannay reported he had made diamonds by heating a mixture of hydrocarbons, bone oil and lithium at red heat in sealed wrought-iron tubes. The project was said to be fraught with great difficulty because of exploding tubes; only three out of eighty held. Hannay's identification of his diamonds seemed very conclusive, since it even included a density of 3.5 and a carbon analysis of 97.85 per cent.
Sir Charles Parsons tried for thirty years to synthesize diamonds, including in his experiments many attempts to duplicate the work of Moissan and Hannay. At first Parsons thought he had succeeded; but later, having some doubts, he scrupulously re-investigated all his work on the subject. Parson's new work clearly demonstrated how he had been misled into regarding as diamond various transparent, singly refracting minerals (spinels) which were very resistant to chemical reagents and would not burn. He finally concluded that neither he nor anyone else had ever succeeded in making diamonds in the laboratory.
The early claims to diamond synthesis were again reviewed by Prof. N. V. Sidgwick, of Oxford, in 1950, and Henry Eyring, of the University of Utah, in 1952. These authorities conclude that the synthesis of diamond in the laboratory has never been shown to be a success, and that thermodynamic considerations make it seem improbable that diamonds could have been formed under the conditions used in the experiments reported.
For a full account of the arguments the reader is referred to an extensive literature on the subject, a bibliography1–24 for which is appended.

Suggestions from Thermodynamics

The phase diagram for carbon as now understood is plotted in Fig. 1. Only the boundary between graphite and its vapour at low pressure is accurately established by experimental measurements. The boundaries at higher pressures between graphite, vapour and liquid are based on the work of Basset, and are not fully accepted.
Figure 1
Phase diagram of carbon 
The location of the boundary between the graphite and diamond-stable regions has very little direct experimental evidence at present. The position of the lower temperature part of this boundary was calculated by thermodynamic methods by Rossini and Jessup25 of the U.S. Bureau of Standards in 1938. The higher temperature part of the boundary shown by broken lines is purely extrapolated from the other part, as the physical data have never been obtained.
The chain-line running across the diagram shows the upper limits of pressure and temperature that are known to have been reached in controlled experiments (this excludes atom bombs) according to the published literature. Prof. P. W. Bridgman, of Harvard University, is the outstanding investigator in this field, working up to more than 400,000 atmospheres at room temperature. He also held temperatures near 3,000° K. at 30,000 kgm./cm.2 for very short intervals of time.
The diagram shows that Bridgman has operated well up into the diamond-stable region and has tried many times to synthesize diamonds but without success. He has stated in several of his papers that the reason for his lack of success is that at the relatively low temperatures at which his experiments were carried out the rates of reaction were negligible. He recognized the necessity of going to higher temperatures; but he had not developed apparatus capable of operating at these high pressures and temperatures simultaneously. The maximum conditions he has reported in this direction were 30,000 kgm./cm.2 and 2,200°–3,000° K. for periods of one or two seconds.
Bridgman19 attempted to establish a point on the diamond–graphite equilibrium curve in a series of experiments in which diamonds were heated to about 2,500° K. for a few seconds at pressures which were increased until the diamonds failed to graphitize. This pressure was reached at 30,000 kgm./cm.2. He suggested in his paper that this point, 30,000 kgm./cm.2 and 2,500° K., might lie near the diamond–graphite equilibrium curve.
In Bridgman's experiment the possibility that pressure reduced the rate of conversion of diamond to graphite cannot be ruled out. If so, the diamonds would fail to graphitize at 30,000 kgm./cm.2 in the few seconds at high temperature available. If this be the case, the point 30,000 kgm./cm.2 and 2,500° K. is still within the graphite region of stability.
The known evidence about the thermodynamic stability for diamond and graphite led us to believe that diamonds could be formed in the pressure region 30,000–100,000 kgm./cm.2 at temperatures somewhere in the range of 1,000°–3,000° K.

Pressure Vessels

Practically all known ultra-high-pressure generators are based on the principle of pushing a piston into a cylinder that encloses the substance to be subjected to the pressure. The main factor which limits the maximum pressures that can be reached within vessels is the strength of materials. The strongest steels in the most favourable form and size (piano wire, for example) have ultimate tensile strengths of the order of 14,000–21,000 kgm./cm.2. Sintered carbides, such as 'Carboloy', have compressive strengths of the order of 50,000 kgm./cm.2 or more. The pressure required for reasonably rapid synthesis of diamond was thought by our group to be above the compressive strength of 'Carboloy' in the range 50,000–100,000 kgm./cm.2.
Merely making the walls thicker on a pressure vessel contributes very little to its pressure-holding ability after a certain wall thickness is reached. By using multiple support bands on the cylinder part (a technique used years ago in making large gun barrels), and special sealing gasket devices between the piston and cylinder, Bridgman had developed pressure vessels good for 50,000 kgm./cm.2 at room temperature. At high temperatures, materials get weaker and in general the attainable pressures are lower.
By developing some new ways of distributing stress and giving support to critical parts, our research group has succeeded in developing pressure vessels that operate at pressures up to at least 100,000 kgm./cm.2 and temperatures in excess of 2,300° K. for hours of continuous operation.

Calibration of Pressures and Temperatures

Pressures of this magnitude are calibrated by making use of four of the electrical resistance transitions observed by P. W. Bridgman26 in the pressure region up to 80,000 kgm./cm.2. The transitions are bismuth 25,400, thallium 45,000, cæsium 55,000 and barium at 80,000 kgm./cm.2. For pressures greater than 80,000 kgm./cm.2, the melting point of germanium as a function of pressure was used. It was found to decrease linearly with pressure to press loads corresponding to 100,000 kgm./cm.2.
Temperatures inside the pressure cells are measured by use of thermocouples, melting points of materials, change of electrical resistance of wires, Curie points of magnetic materials, thermocolour paints, etc.

Region now Available for Research

In Fig. 2 appears a pressure–temperature diagram, with linear scales on both axes, showing the new region of exploratory research which has been opened up by the development of our new high-pressure and high-temperature apparatus. Note that the newly attainable region covers about as much area as does all the region previously attainable.
Figure 2New region of pressure and temperature available for research

Diamond Synthesis

The new region of attainable pressure and temperature extended well into the diamond-stable region as defined in Fig. 1. Under these supposed diamond-stable conditions, processes were discovered which yielded diamonds ranging in size from less than 100 microns to more than 1 mm. along an edge. The various processes have been independently repeated more than one hundred times by a number of workers in this Company. Each time crystals were grown which pass the critical tests for identification with diamond. The present chamber sizes permit the synthesis of up to about ¼ carat of diamond material.
It is not necessary to introduce diamond seeds. Nucleation and growth occur spontaneously and profusely when diamond-stable conditions are reached. In some of the early successful work, diamond seeds were added; but growth occurred independently and apart from the added seed. In a few cases under special conditions, some growth has occurred on the seed crystals.
The man-made diamonds form in many of the different crystal habits found in nature. These include octahedra, tetrahedra and dodecahedra. Some typical forms are shown in Fig. 3.
Figure 3Man-made diamonds. (a) 1-mm. diamond shown with phonograph needle. (b) 0.2–0.5-mm. octahedra

Proof that Diamonds were Made

The proof that diamonds were made was based on the following conclusive tests:
  • Identity of crystal structure of man-made diamonds to natural diamonds as determined by X-ray diffraction patterns (Fig. 4).
  • Chemical analysis to show that crystals made were composed of carbon. Those analysed were 86 per cent carbon, 14 per cent inorganic ash identified with the growing media.
  • Hardness tests. The laboratory-made diamonds were hard enough to scratch the hardest face, the 111 face, of natural diamond (Fig. 5).
  • Repeatability. The synthesis of diamond has been repeated, entirely independently, by a number of workers in the General Electric Company. The diamonds so made pass the above conclusive tests for diamonds.
Figure 4X-ray diffraction patterns of man-made and natural diamond (powder camera photograph)
Figure 5Scratches made on natural diamond 111 face with man-made diamonds. A large number of scratches appear in a generally vertical direction down through the centre of the picture. The horizontal marks are growth steps on the crystal face. The triangular pit in the lower right-hand corner is also a typical growth mark found on diamond faces
In addition, it was shown that the index of refraction for the man-made crystals was within the range 2.40–2.50. Mineral compilations27 list five isotropic minerals having a refractive index near this range. Natural diamond is one of them and its value is 2.419. The other four are:
Index of refraction
Mohs' hardness
Franklinite, (Zn,Fe,Mn)O·(Fe,Mn)2O3
2.36±
6
Perovskite, CaO·TiO2
2.38±
5.5
Sphalerite, (Zn,Fe)S
2.428
3.5–4
Eglestonite, Hg2Cl2,Hg2O
2.49±
2.3
These four are ruled out as possibilities by the other critical tests.
The result of more than four years effort in this laboratory has been the development of equipment capable of holding pressures and temperatures in the diamond-stable region for hours at a time. Synthesis of diamond has been accomplished more than a hundred times. A number of people have independently repeated the various diamond-making processes successfully. These laboratory-made diamonds can scratch natural diamonds and have a crystal structure identical with natural diamonds.

Bibliography

Note. References centring about the claims of Hannay and of Moissan, which are the major ones, are dealt with chronologically. Earlier references extending back to 1828 are considered in J. W. Mellor's "Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. 5 (Longmans, Green and Co., London, 1924).
  1. Hannay, J. B., Proc. Roy. Soc., 30, 188 (1880), or Chem. News41, 106 (1880).
  2. Story-Maskelyne, N., The Times, Feb. 20, 1880, or Chem. News, 41, 97 (1880).
  3. Hannay, J. B., Proc. Roy. Soc., 30, 450 (1880), or Nature22, 255 (1880).
  4. Moissan, H., C.R. Acad. Sci., Paris118, 320 (1894), and 123, 206, 210 (1896).
  5. Hannay, J. B., Chem. News86, 173 (1902).
  6. Crookes, W., "Diamonds"(London, 1909).
  7. Ruff, O., Z. anorg. allgem. Chem., 99, 73 (1917).
  8. Parsons, C. A., Proc. Roy. Soc., 79, 532 (1907); J. Inst. Metals20, 5 (1918); Phil. Trans., A, 220, 67 (1920).
  9. LeChatelier, H., "Leçons sur le carbone", p. 24 (Paris, 1926).
  10. Desch, C. H., Nature121, 799 (1928).
  11. Hershey, J. W. Trans. Kansas Acad. Sci., 31, 52 (1929), and 40, 109 (1937); "The Book of Diamonds" (Hearthside Press, 1940).
  12. Bannister, F. A., and Lonsdale, K., Nature151, 334 (1943); Mineral Mag.,26, 309 (1943).
  13. Desch, C. H., Nature152, 148 (1943).
  14. Rayleigh, Lord, Nature152, 597 (1943).
  15. Travers, M. W., Nature152, 726 (1943).
  16. French, J. W., Nature153, 112 (1944).
  17. Lonsdale, K., Nature153, 669 (1944).
  18. Mellor, D. P., J. Chem. Phys., 15, 525 (1947); Research2, 314 (1949).
  19. Bridgman, P. W., J. Chem. Phys., 15, 92 (1947).
  20. Rossini, F. D., "Chemical Thermodynamics", 453 (Wiley, 1950).
  21. Sidwick, N. W., "Chemical Elements and Their Compounds", 1, 491–3 (Clarendon Press, Oxford, 1950).
  22. Moeller, T., "Inorganic Chemistry", 669 (Wiley, 1952).
  23. Eyring, H., and Cagle, jun., F. W., Z. Elektrochem., 56, 480 (1952).
  24. Neuhaus, A., Angew. Chem., 66, 525 (1954).
  25. Rossini, F. D., and Jessup, R. S., J. Res. Nat. Bur. Stand., 21, 491 (1938).
  26. Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., 81, 165 (1952).
  27. Palache, Berman and Frondel, "Dana's System of Mineralogy"(J. Wiley, 1951).

Errors in diamond synthesis

Sir — In 1955, some of us announced the first reproducible synthesis of diamond1, details of which were subsequently published2. These results marked the beginning of the present synthetic-diamond industry. But from the outset there were doubts in our team as to whether the first diamond grown by our technique (which we will call the run 151 diamond) was truly synthetic at all, or whether it was instead just a fragment of a natural diamond seed that got into the experiment inadvertently. We have now reanalysed the run 151 diamond using modern spectroscopic techniques and have found that it is indeed a small piece of a natural type Ia diamond.
Figure 1Infrared absorption spectra of: a, run 151 diamond;b, a type Ia natural diamond with 'B'-form nitrogen;c, a typical synthesized diamond (type Ib)
In the early 1950s four of us (H.P.B., F.P.B., H.M.S. and R.H.W.), together with H. T. Hall, developed an approach to diamond synthesis at high pressures and temperatures. The pressure scale used in our experiments was Bridgman's 'resistance-jump' scale, which was suspected to be in error in absolute terms above 30 kbar or so. The proximity of our experimental conditions to the calculated graphite–diamond phase boundary was therefore uncertain.
The run 151 diamond appeared in an experiment using apparatus made of hard steel. According to the Bridgman 'resistance' scale, the pressure in this run was about 53 kbar, within the diamond stability field3. But later developments revealed that the true pressure could not have been much above 42 kbar, which is insufficient to stabilize diamond.
To investigate the true nature of the run 151 diamond, we recently removed it from the GE archives, cleaned it with acids and rinsed it with water. An infrared absorption spectrum was measured using an IR PLAN microscope attached to a Nicolet 740 FTIR spectrometer. The portion of this spectrum shown in the figure resembles that of a natural nitrogen-containing type Ia diamond4. In particular, there are coincidences of the absorption bands at about 1,365 cm-1 (related to nitrogen platelets), 1,330 cm-1 (a Raman frequency, rendered infrared-active by defects and impurities), 1,280 cm-1 (from nitrogen in the 'A' aggregate form) and 1,175 cm-1 (from nitrogen in the 'B' aggregate form). We also show the spectrum of a typical nitrogen-containing synthetic type Ib diamond, which has characteristic bands at 1,130 and 1,343 cm-1 (ref. 5); neither of these bands is seen in the run 151 diamond. We conclude that the run 151 diamond is a small piece of a natural type Ia diamond.
How the natural diamond got into the run 151 experiment is not clear, although it came to light only a week later, when the iron pellet from the run was being polished for metallographic examination. After we found this diamond and took it to be synthetic, Hall used a similar synthetic system of iron/iron sulphide/graphite in his 'belt' apparatus, which used a carbide piston and cylinder to achieve high pressures6. This led to further successful runs and ultimately to the development of the process for synthesizing diamonds at high pressures and temperatures from graphite reacted with molten group VIII metals and alloys, which we described fully in 19592 (after a US Department of Defense secrecy order had been lifted). Our mistake was therefore clearly a most serendipitous one, as it provided the impetus to experiment with that system at higher pressures, leading quickly to the "right" and "reproducible" results.
H. P. BovenkerkF. P. BundyR. M. ChrenkoP. J. CodellaH. M. StrongR. H. Wentorf Jr
GE Corporate Research and Development, Schenectady, New York 12301, USA
  1. Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H. Jr Nature 176, 51-54 (1955).
  2. Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H. JrNature 184, 1094-1098 (1959). | click here for a PDF version (456 K)|
  3. Strong, H. M. Am. Phys57, 794-802 (1989).
  4. Clark, C. D., Mitchell, E. W. J. & Parsons, B. J. in The Properties of Diamond(ed. Field, J. E.) 28 (Academic, London, 1979).
  5. Chrenko, R. M., Tuft, R. E. & Strong, H. M. Nature 270, 141-144 (1977).
  6. Hall, H. T. Rev. sci. Instr31, 125-131 (1960).
http://www.nature.com/physics/looking-back/diamond/index.html