Sunday, November 10, 2013

Insane Coincidences You Won't Believe Actually Happened

6 Insane Coincidences You Won't Believe Actually Happened

We're not going to bullshit you. Look hard enough, and you can find "amazing" coincidences anywhere. With a whole universe to work with, sometimes the stars are going to align just right.
But, even cynical types like us have to admit that sometimes this stuff can get downright creepy.
#6.
A Terrifyingly Accurate Prediction by Edgar Allan Poe
In 1838, future horror-god Edgar Allan Poe released a book called The Narrative of Arthur Gordon Pym of Nantucket, his only full novel. The book was such a bomb that Poe eventually agreed with his critics that it was "a very silly book" (yet still good enough to inspire heavyweights like Jules Verne and Herman Melville to write Moby Dick and An Antarctic Mystery--yes, Poe was a badass).

PIMP.
Where it Gets Weird:
Poe did a Blair Witch thing with his novel, which claimed to be based on true events. This turned out to be a half-truth: The real life events simply had not happened yet.
One scene in The Narrative of Arthur Gordon Pym of Nantucket visits a whaling ship lost at sea, taking with it all but four crewmen. Out of food, the men drew lots to see who would be eaten, the unfortunate decision landing on a young cabin boy named Richard Parker.

Before fathering Spider-Man and being double-crossed by the Red Skull!
Editor's note: Change that. You're an idiot.
Forty-six years later, there was an actual disaster at sea involving the Mignonette. It became famous due to the legal consequences of some gruesome events on board, specifically the way the men drew lots and decided to eat their cabin boy...
Where it Gets Even Weirder:
...who was named Richard Parker.

Richard Parker: aged 17 years.
The bizarre story was discovered decades later by Nigel Parker, a distant cousin of the Richard Parker who got eaten. You can only imagine what the fuck went through his mind when he stumbled upon the connection.

Hell, this was us!
And that would go down as the freakiest unintentional prediction of future events in a work of fiction, if it were not completely blown away by...
#5.
Morgan Robertson Writes About the Titanic... 14 Years Early
A hundred years before James Cameron turned douchebaggery into an art form at the Oscars, American author Morgan Robertson wrote a shitty book called Futility, or the Wreck of the Titan, about the sinking of an "unsinkable" ocean liner. When you see the cover, you figure you're pretty clearly looking at a fictionalized version of the Titanic story.
No surprise there; it's a story that's been told over and over (there were 13 Titanic movies before Cameron's, including one by the Nazis) but Robertson's book was first.
Where it Gets Weird:
He was so eager to be first, apparently, that he didn't bother to wait for the Titanic to actually sink before writing about it. The Wreck of the Titan was published in 1898, 14 years before RMS Titanic was even finished being [cheaply] built.
The similarities between Robertson's work and the Titanic disaster are so astounding that one has to imagine if White Star Line built Titanic to Robertson's specs as a dare. The Titan was described as "the largest craft afloat and the greatest of the works of men," "equal to that of a first class hotel," and, of course, "unsinkable".
Both ships were British-owned steel vessels, both around 800 feet long and sank after hitting an iceberg in the North Atlantic, in April, "around midnight." Sound like enough to keep you up at night? Maybe that's why Robertson republished the book in 1912 just in case enough people didn't know that he wrote it.

And you thought this guy was an ass.
Where it Gets Even Weirder:
While the novel does bear some curious coincidences with the Titanic disaster, there are quite a few things that Robertson got flat wrong. For one, the Titanic did not crash into an iceberg "400 miles from Newfoundland" at 25 knots. It crashed into an iceberg 400 miles from Newfoundland at 22.5 knots.
Wait, what the fuck? That's one hell of a lucky guess!

What 41.1 million square miles looks like.
But maybe the weirdest thing about Titan were points that had nothing to do with the story, but check out after numerous inquires and expeditions to the Titanic wreck site.
For one, both the Titan and the Titanic had too few lifeboats to accommodate every passenger on board; the Titan carrying "as few as the law allowed." While Robertson decided to be generous and include four lifeboats more on his ship than Titanic, it's an odd point to bring up when you consider that lifeboats had nothing to do with the fucking story. When Titan hit the iceberg (starboard bow, naturally), the ship sank immediately, making the point made about lifeboats inconsequential. Why the fuck mention this?!
It'd be like HAL 9000 addressing the danger posed by O-rings at low temperature decades before the Challenger disaster.
#4.
The Civil War Keeps Finding Wilmer McLean
When the American Civil War erupted in 1861, Wilmer McLean of Virginia was too old and "whatever" for warfighting. Unfortunately, he also happened to live smack dab on the road between Washington, DC and Richmond, VA, the respective capitals of the Union and Confederacy.
The first battle of the Civil War pretty much happened at this guy's place. The Battle of Bull Run, broke out on July 21, 1861 near Manassas, Virginia--McLean's hometown. Confederate Gen. P.G.T. Beauregard needed a building to serve as headquarters for his staff and many initials, and when he saw Wilmer McLean's cozy house, he figured "what the fuck..." and camped there.

Major war foul.
This immediately subjected the building to artillery fire, and one cannonball somehow found its way down the poor bastard's chimney. The entire building should have gone up like the Death Star, yet miraculously no one was hurt.
Where it Gets Weird:
But, hey, an insane amount of fighting occurred along that road. A lot of people between Richmond and DC could say a battle happened on their front lawn. And, after this narrow escape with the Reaper in his very own home, McLean figured that moving his family out of No Man's Land would be a smart bet.
However, the man took so long to skip town that when 1862 rolled around, a battle nearly twice as large and four times as bloody exploded just outside his front door again--the Second Battle of Bull Run. After dodging this second bullet the size of Civil War battlefield, McLean finally sold and moved his family as far away as he could afford.
Where it Gets Even Weirder:
When Wilmer settled on a cottage in Clover Hill, Virginia, the town that later changed its name to Appomattox Court House. By 1865, Robert E. Lee's "invincible" Army of North Virginia was too busy having the ever-loving shit kicked out of it by General Ulysses S. Grant of the Union Army to defend Richmond. So after abandoning their capital, Lee's sorry-excuse-for-an-army was chased by Grant all across Virginia to... fucking Appomattox Court House.

The armies of the Civil War, taking the battle to wherever Wilmer happened to be that day.
On April 9, 1865, General Lee officially surrendered to Ulysses S. Grant, effectively ending the American Civil War. The site for his surrender: the parlor of Wilmer McLean's new home.
Once the two armies left (and helped themselves to some furniture as souvenirs), the now-bankrupt McLean remarked: "The war began in my front yard and ended in my front parlor," which is probably the classiest way a man can handle the single most shit-luck in American history.

Should've just moved to Gettysburg.


Read more: http://www.cracked.com/article_18421_6-insane-coincidences-you-wont-believe-actually-happened.html#ixzz2kIIG2JQT

Friday, November 8, 2013

Los desodorantes anti-transpirante







Esta es una información vital -literalmente de vida o muerte - No dejes de leerlo y enviarlo a quienes aprecias.
AGUA Y JABÓN EN LAS AXILAS
ANTES DE ACOSTARSE    
Debemos pasar la noche con la axila limpia y sin desodorante, para que sea un momento de respiración libre de la axila.  

!La principal causa del Cáncer de Seno
es el uso de anti-transpirantes  
SI, ANTI-TRANSPIRANTES.
    
La mayoría de los productos en el mercado son una combinación de anti-transpirantes/desodorantes.
   Miren bien las etiquetas!  
DESODORANTE está bien,
ANTI-TRANSPIRANTE, NO.
  
La concentración de toxinas provoca la
mutación de las células:  
CÁNCER. He aquí la razón:
  
El cuerpo humano tiene apenas algunas áreas por donde puede eliminar las toxinas: atrás de las rodillas, a trás de las orejas, el área de las ingles y las axilas.  
Las toxinas son eliminadas con la transpiración.
   Los anti-transpirantes, como su nombre lo dice, evitan la transpiración; por tanto, inhiben al cuerpo de eliminar las toxinas a través de las axilas.  
Estas toxinas no desaparecen por arte de magia.
    
Como no salen por el sudor, el organismo las deposita en las glándulas linfáticas que se encuentran debajo de los brazos.
   La mayoría de los tumores cancerosos del pecho, ocurren en este cuadrante superior del área de los senos.
   Precisamente donde se hallan las glándulas, En los hombres parece ocurrir en menor proporción, pero no están exentos de
desarrollas Cáncer de Seno por causa de los antitranspirante que usan, en vez de agua y jabón.  
La diferencia está en el hecho de que cuando los hombres usan anti-transpirantes, no los aplican directamente sobre la piel; lo hacen en gran parte, en los pelos de las axilas.
    

Las mujeres que se aplican anti-transpirantes después de rasurar o depilar las axilas, aumentan el riesgo debido a minúsculas heridas e irritaciones de la piel, que hacen que los componentes químicos nocivos penetren más rápidamente en el organismo,
  
Por favor, pasen esta información a todas las personas... 
El Cáncer de Seno se está volviendo trem endamente común y este aviso puede salvar algunas vidas.  
Si, de alguna manera dudan de esta información, pueden hacer sus propias investigaciones
   Probablemente van a llegar a la misma conclusión.
  
Ahora traigo la otra cara de la moneda:

Desodorantes y antitranspirantes o el cancer de seno

Puntos clave
No heno Estudios conclusivos Que relacionen el USO de antitranspirantes o Desodorantes en las axilas con el cancer de seno (mama ) .
Los Estudios de Investigación Electronico acerca de los antitranspirantes o Desodorantes Que Se Usan Bajo El Brazo de han terminado y Sus Resultados contradictorios hijo .
¿ Pueden los antitranspirantes o los Desodorantes causar cancer de seno (mama ) ?
Los Artículos en la prensa y en Internet de han advertido Que los antitranspirantes ( preparaciones párr reducir el sudor de la axila ) o los Desodorantes ( preparaciones Que eliminan o enmascaran el mal olor) causan cancer de seno ( 1 ) . Los Informes de han sugerido Que ESTOS Productos contienen sustancias dañinas Que pueden servicios absorbidas Por La piel o Para entrar en el Cuerpo porción cortaduras causadas al afeitarse . Algunos Científicos de han Propuesto ademas Que ciertos Ingredientes de los antitranspirantes o Desodorantes pueden Estar Relacionados con el cancer de seno PORQUE SE aplican frecuentemente a Una zona Cercana a los senos ( 2 , 3 ) .

Sin embargo , los Investigadores del Instituto Nacional del Cáncer (NCI ) , el Cual forma instancia de parte de los Institutos Nacionales de la Salud, no estan Al Tanto De Una comprobación Científica conclusiva Que relacione el USO de antitranspirantes o Desodorantes en las axilas y la Presencia de Cáncer de seno a Consecuencia de ESE USO. La Administración de Drogas y Alimentos de los estados unidos ( EE.UU. Food and Drug Administration, FDA) , la Cual regula los Alimentos , Cosméticos , Medicamentos y Aparatos Médicos , tampoco Cuenta con Una comprobación de investigaciones Que indiquen Que los Ingredientes de antitranspirantes o Desodorantes causan Cáncer.

¿ Qué saben los Científicos about los Ingredientes de antitranspirantes y Desodorantes ?
Compuestos de aluminio sí Usan en los antitranspirantes Como el Ingrediente activo . Estós Compuestos Forman Una Cubierta temporal de los conductos del sudor ; this cover impide Que el sudor fluya a la Superficie de la piel . Algunos Estudios sugieren Que los Compuestos de aluminio , los Cuales sí aplican frecuentemente y sí dejan en la piel Cerca del seno , pueden Ser absorbidos Por la piel y causar Efectos parecidos a los del estrogeno ( Efectos Hormonales ) ( 3 ) . Ya Que el estrogeno Tiene la Capacidad de Fomentar el Crecimiento de las Células de Cáncer de seno , algunos Científicos sugieren Que los Compuestos de aluminio en los antitranspirantes pueden contribuir a la Formación del cancer de seno ( 3 ) .

Algunos Estudios sí Han Enfocado en los parabenos , los Cuales hijo Preservativos Que se Usan en algunos Desodorantes y antitranspirantes Que, sí ha demostrado , imitan la Actividad del estrogeno en las Células del Cuerpo ( 4 ) . Aunque los parabenos sí Usan en MUCHOS cosméticos , Alimentos y Productos Farmacéuticos , Segun la FDA, las Principales Marcas de Desodorantes y antitranspirantes en los estados unidos no contienen parabenos en la Actualidad . Los Consumidores pueden leer la Etiqueta de Ingredientes párrafo Determinar si ONU desodorante o antitranspirante contains parabenos . Los parabenos pueden Ser identificados facilmente porción Nombre ; porción EJEMPLO , metil parabeno , propil parabeno , butil parabeno o bencil parabeno . La Base de Datos de Productos Domésticos de la Biblioteca Nacional de Medicina also Tiene Información Sobre los Ingredientes Que se Usan en las Principales Marcas de Desodorantes y antitranspirantes .

La idea Que los parabenos sí acumulan en el Tejido del seno FUE respaldada Por Un Estudio Realizado en 2004 , el Cual Encontro parabenos en 18 de las 20 Muestras de tumors de seno Humanos ( 5 ) . Sin embargo , Este Estudio no Probo Que los parabenos causan tumors de seno ( 4 ) . Los Autores del Estudio no analizaron Tejido de seno sano o Tejido de Otras contradictorio del Cuerpo y no demostraron Que los parabenos sí encuentran Solamente en el Tejido canceroso de seno ( 5 ) . Ademas , la Investigación no identificó el origen de los parabenos y no Florerias CONFIRMAR de Me acumulación de los parabenos sí debe al USO de Desodorantes o antitranspirantes .

De Se Requiere Más Investigación párrafo EXAMINAR especificamente si el BSG de Desodorantes antitranspirantes o de Florerias causar la acumulación de parabenos y de Compuestos de aluminio en el Tejido del seno . Also , es Preciso Investigar párrafo Determinar si ESTAS sustancias Químicas pueden alterar el ADN de algunas Células o causar Otros Cambios en las Células de seno Que pueden resultar en cancer de seno .

¿ Que Han aprendido los Científicos Sobre la Relación Entre los antitranspirantes o Desodorantes y el cancer de seno ?
En 2002 , sí publicaron los Resultados De Una Investigación Sobre la Relación Entre el cancer de seno y los antitranspirantes o Desodorantes párr las axilas ( 6 ) . Este Estudio no mostro sin Riesgo alcalde de cancer de seno Entre las Mujeres que indicaron USAR antitranspirante o desodorante las axilas párr . Los Resultados tampoco demostraron sin Riesgo alcalde de cancer de seno Entre las Mujeres que indicaron USAR navajas de afeitar ( no eléctricas ) y antitranspirante o desodorante , ni Entre las Mujeres que indicaron USAR antitranspirante o desodorante en las axilas Antes de Que Pasara Una hora de haberse rasurado con navaja de afeitar . Resultados Estós sí basaron en las Entrevistas Realizadas en 813 Mujeres con cancer de seno y 793 Mujeres sin ANTECEDENTES of this cáncer.

En 2003 , sí reportaron LOS Resultados de la ONU Estudio Distinto Que examino la Frecuencia de afeitarse las axilas y USAR Desodorantes antitranspirantes o Entre 437 Supervivientes de Cáncer de seno ( 7 ) . En Este Estudio , sí vio Que La edad de Diagnóstico del Cáncer de seno FUE significativamente Menor entre las Mujeres que usaban ESTOS Productos y sí afeitaban las axilas con Más Frecuencia . Ademas , las Mujeres que empezaron ESTAS costumbres higiénicas Antes de los 16 Jahr de EDAD were diagnosticadas con cancer de seno un Una EDAD Menor Que Quienes empezaron AEE Costumbres un Una EDAD alcalde. MIENTRAS Que estos resultados sugieren Que afeitarse las axilas y USAR Desodorantes antitranspirantes o pueden Estar Relacionados con el cancer de seno , no demuestran la ONU Vínculo conclusivo Entre las costumbres de higiene de las axilas y el cancer de seno .

En 2006 , los Investigadores examinaron el USO de antitranspirantes y Otros FACTORES en 54 Mujeres con cancer de seno y 50 Mujeres sin this cáncer. Se concluyó Que No EXISTE Una Asociación Entre el USO de antitranspirantes y el Riesgo de Cáncer de Seno . Sin embargo , los ANTECEDENTES Familiares y el USO de Anticonceptivos Orales were Asociados ONU de la estafa Riesgo alcalde de cancer de seno ( 8 ) .

Ya Que los Estudios de antitranspirantes y Desodorantes y el Cáncer de Seno de han proporcionado Resultados Conflictivos , Se Requiere Más párr Investigación Investigar this Relación y Otros FACTORES Que pueden Estar involucrados .

¿Donde Se Puede Obtener Más información Sobre el Riesgo de Cáncer de seno ?
Las personalidades preocupadas Sobre Su Riesgo de Cáncer de Seno Deben Hablar Con Su Médico . Se Puede ENCONTRAR Más información Sobre el Riesgo de Cáncer de Seno en Lo Que USTED NECESITA sable ™ Sobre El Cáncer de seno .

Los Residentes de los estados unidos querrán ComunicaRSE con el Servicio de Información Sobre el Cáncer ( CIS ) del Instituto Nacional del Cáncer (más abajo ) SI TIENEN Más ¿Tienes dudas? O preocupaciones Sobre el cancer de seno . El Número de Teléfono del CIS es 1-800-422-6237 y el Correo electrónico es nciespanol@mail.nih.gov .

Bibliografía selecta :

Jones J. rumores Puede causar cáncer ? Diario del Instituto Nacional del Cáncer 2000 ; 92 (18) :1469-1471 . [ PubMed Abstract]

Darbre PD . Cosméticos axilas y el cáncer de mama. Journal of Applied Toxicology 2003 , 23 ( 2 ) :89 -95. [ PubMed Abstract]

Darbre PD . Aluminio, antitranspirantes y el cáncer de mama. Journal of Inorganic Biochemistry 2005 , 99 (9) :1912-1919 . [ PubMed Abstract]

Harvey PW , Everett DJ. Importancia de la detección de ésteres de ácido p - hidroxibenzoico ( parabenos ) en los tumores de mama humanos . Journal of Applied Toxicology 2004 , 24 ( 1 ) :1 - 4 . [ PubMed Abstract]

Darbre PD , Aljarrah A, Miller WR , et al . Las concentraciones de parabenos en tumores de mama humanos . Journal of Applied Toxicology 2004 , 24 ( 1 ) :5 - 13 . [ PubMed Abstract]

Mirick DK, S Davis , Thomas DB . El uso de antitranspirantes y el riesgo de cáncer de mama. Diario del Instituto Nacional del Cáncer 2002 ; 94 (20) :1578-1580 . [ PubMed Abstract]

McGrath KG . Una edad más temprana de diagnóstico de cáncer de mama relacionado con el uso más frecuente de antitranspirantes / desodorantes y afeitarse las axilas . European Journal of Cancer 2003 ; 12 (6) :479-485 . [ PubMed Abstract]

Fakri S , Al- Azzawi A, Al- Tawil N. uso antitranspirante como factor de riesgo para el cáncer de mama en Irak. Eastern Mediterranean Health Journal 2006 ; 12 (3-4) :478-482 . [ PubMed Abstract]
# # #

Páginas de Internet y Materiales Relacionados del Instituto Nacional del Cáncer :

Hoja informativa Evaluación de Información de Salud en Internet
Lo Que USTED NECESITA sable ™ Sobre El Cáncer de seno
¿ En que Podemos ayudarle ?

Markerte Amplia Información de Cáncer Basada en la Investigación párrafo Pacientes y Familiares , párr Profesionales Médicos , Investigadores oncológicos , promotores y párr El Público en general.

Llamé al Servicio de Información Sobre el Cáncer del Instituto Nacional del Cáncer al 1-800-422-6237 (1 -800- 4-CANCER )
Visítenos en http://www.cancer.gov/espanol o http://www.cancer.gov
Envie do Correo electrónico de nciespanol@mail.nih.gov
Solicite Publicaciones Por Medio de http://www.cancer.gov/publications o LLAME al 1-800-422-6237 (1 -800- 4-CANCER )
Obtenga Ayuda párr Dejar de Fumar en 1-877-448-7848 (1- 877- 44U -QUIT )
Este Texto Florerias copiarse o usarse con Toda libertad . Sin embargo , agradeceremos Que se de Reconocimiento al Instituto Nacional del Cáncer de Como Creador of this Información . El Material Gráfico Puede Ser Propiedad del artista o del editor Por lo que tal Vez mar Necesaria do AUTORIZACION párr Poder usarlo .



Traducciones

Antitranspirantes o desodorantes y el cáncer de seno

Puntos clave
No hay estudios conclusivos que relacionen el uso de antitranspirantes o desodorantes en las axilas con el cáncer de seno (mama).
Los estudios de investigación acerca de los antitranspirantes o desodorantes que se usan bajo el brazo han terminado y sus resultados son contradictorios.
¿Pueden los antitranspirantes o los desodorantes causar cáncer de seno (mama)?
Los artículos en la prensa y en Internet han advertido que los antitranspirantes (preparaciones para reducir el sudor de la axila) o los desodorantes (preparaciones que eliminan o enmascaran el mal olor) causan cáncer de seno (1). Los informes han sugerido que estos productos contienen sustancias dañinas que pueden ser absorbidas por la piel o entrar en el cuerpo por cortaduras causadas al afeitarse. Algunos científicos han propuesto además que ciertos ingredientes de los antitranspirantes o desodorantes pueden estar relacionados con el cáncer de seno porque se aplican frecuentemente a una zona cercana a los senos (2, 3).

Sin embargo, los investigadores del Instituto Nacional del Cáncer (NCI), el cual forma parte de los Institutos Nacionales de la Salud, no están al tanto de una comprobación científica conclusiva que relacione el uso de antitranspirantes o desodorantes en las axilas y la presencia de cáncer de seno a consecuencia de ese uso. La Administración de Drogas y Alimentos de los Estados Unidos (U.S. Food and Drug Administration, FDA), la cual regula los alimentos, cosméticos, medicamentos y aparatos médicos, tampoco cuenta con una comprobación de investigaciones que indiquen que los ingredientes de antitranspirantes o desodorantes causan cáncer. 

¿Qué saben los científicos acerca de los ingredientes de antitranspirantes y desodorantes?
Compuestos de aluminio se usan en los antitranspirantes como el ingrediente activo. Estos compuestos forman una cubierta temporal de los conductos del sudor; esta cubierta impide que el sudor fluya a la superficie de la piel. Algunos estudios sugieren que los compuestos de aluminio, los cuales se aplican frecuentemente y se dejan en la piel cerca del seno, pueden ser absorbidos por la piel y causar efectos parecidos a los del estrógeno (efectos hormonales) (3). Ya que el estrógeno tiene la capacidad de fomentar el crecimiento de las células de cáncer de seno, algunos científicos sugieren que los compuestos de aluminio en los antitranspirantes pueden contribuir a la formación del cáncer de seno (3).

Algunos estudios se han enfocado en los parabenos, los cuales son preservativos que se usan en algunos desodorantes y antitranspirantes que, se ha demostrado, imitan la actividad del estrógeno en las células del cuerpo (4). Aunque los parabenos se usan en muchos cosméticos, alimentos y productos farmacéuticos, según la FDA, las marcas principales de desodorantes y antitranspirantes en los Estados Unidos no contienen parabenos en la actualidad. Los consumidores pueden leer la etiqueta de ingredientes para determinar si un desodorante o antitranspirante contiene parabenos. Los parabenos pueden ser identificados fácilmente por nombre; por ejemplo, metil parabeno, propil parabeno, butil parabeno o bencil parabeno. La base de datos de productos domésticos de la Biblioteca Nacional de Medicina también tiene información sobre los ingredientes que se usan en las marcas principales de desodorantes y antitranspirantes.

La idea que los parabenos se acumulan en el tejido del seno fue respaldada por un estudio realizado en 2004, el cual encontró parabenos en 18 de las 20 muestras de tumores de seno humanos (5). Sin embargo, este estudio no probó que los parabenos causan tumores de seno (4). Los autores del estudio no analizaron tejido de seno sano o tejido de otras partes del cuerpo y no demostraron que los parabenos se encuentran solamente en el tejido canceroso de seno (5). Además, la investigación no identificó el origen de los parabenos y no puede confirmar que la acumulación de los parabenos se debe al uso de desodorantes o antitranspirantes.

Se requiere más investigación para examinar específicamente si el uso de desodorantes o de antitranspirantes puede causar la acumulación de parabenos y de compuestos de aluminio en el tejido del seno. También, es preciso investigar para determinar si estas sustancias químicas pueden alterar el ADN de algunas células o causar otros cambios en las células de seno que pueden resultar en cáncer de seno. 

¿Qué han aprendido los científicos sobre la relación entre los antitranspirantes o desodorantes y el cáncer de seno?
En 2002, se publicaron los resultados de una investigación sobre la relación entre el cáncer de seno y los antitranspirantes o desodorantes para las axilas (6). Este estudio no mostró un riesgo mayor de cáncer de seno entre las mujeres que indicaron usar antitranspirante o desodorante para las axilas. Los resultados tampoco demostraron un riesgo mayor de cáncer de seno entre las mujeres que indicaron usar navajas de afeitar (no eléctricas) y antitranspirante o desodorante, ni entre las mujeres que indicaron usar antitranspirante o desodorante en las axilas antes de que pasara una hora de haberse rasurado con navaja de afeitar. Estos resultados se basaron en las entrevistas realizadas en 813 mujeres con cáncer de seno y 793 mujeres sin antecedentes de este cáncer.

En 2003, se reportaron los resultados de un estudio distinto que examinó la frecuencia de afeitarse las axilas y usar antitranspirantes o desodorantes entre 437 supervivientes de cáncer de seno (7). En este estudio, se vio que la edad de diagnóstico del cáncer de seno fue significativamente menor entre las mujeres que usaban estos productos y se afeitaban las axilas con más frecuencia. Además, las mujeres que empezaron estas costumbres higiénicas antes de los 16 años de edad fueron diagnosticadas con cáncer de seno a una edad menor que quienes empezaron esas costumbres a una edad mayor. Mientras que estos resultados sugieren que afeitarse las axilas y usar antitranspirantes o desodorantes pueden estar relacionados con el cáncer de seno, no demuestran un vínculo conclusivo entre las costumbres de higiene de las axilas y el cáncer de seno.

En 2006, los investigadores examinaron el uso de antitranspirantes y otros factores en 54 mujeres con cáncer de seno y 50 mujeres sin este cáncer. Se concluyó que no existe una asociación entre el uso de antitranspirantes y el riesgo de cáncer de seno. Sin embargo, los antecedentes familiares y el uso de anticonceptivos orales fueron asociados con un riesgo mayor de cáncer de seno (8).

Ya que los estudios de antitranspirantes y desodorantes y el cáncer de seno han proporcionado resultados conflictivos, se requiere más investigación para investigar esta relación y otros factores que pueden estar involucrados.

¿Dónde se puede obtener más información sobre el riesgo de cáncer de seno?
Las personas preocupadas sobre su riesgo de cáncer de seno deben hablar con su médico. Se puede encontrar más información sobre el riesgo de cáncer de seno en Lo que usted necesita saber sobre™ el cáncer de seno.

Los residentes de los Estados Unidos querrán comunicarse con el Servicio de Información sobre el Cáncer (CIS) del Instituto Nacional del Cáncer (más abajo) si tienen más preguntas o preocupaciones sobre el cáncer de seno. El número de teléfono del CIS es 1–800–422–6237 y el correo electrónico es nciespanol@mail.nih.gov.

Bibliografía selecta: 

Jones J. Can rumors cause cancer? Journal of the National Cancer Institute 2000; 92(18):1469–1471. [PubMed Abstract] 

Darbre PD. Underarm cosmetics and breast cancer. Journal of Applied Toxicology 2003; 23(2):89–95. [PubMed Abstract] 

Darbre PD. Aluminium, antiperspirants and breast cancer. Journal of Inorganic Biochemistry 2005; 99(9):1912–1919. [PubMed Abstract] 

Harvey PW, Everett DJ. Significance of the detection of esters of p-hydroxybenzoic acid (parabens) in human breast tumours. Journal of Applied Toxicology 2004; 24(1):1–4. [PubMed Abstract] 

Darbre PD, Aljarrah A, Miller WR, et al. Concentrations of parabens in human breast tumours. Journal of Applied Toxicology 2004; 24(1):5–13. [PubMed Abstract] 

Mirick DK, Davis S, Thomas DB. Antiperspirant use and the risk of breast cancer. Journal of the National Cancer Institute 2002; 94(20):1578–1580. [PubMed Abstract] 

McGrath KG. An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and underarm shaving. European Journal of Cancer 2003; 12(6):479–485. [PubMed Abstract] 

Fakri S, Al-Azzawi A, Al-Tawil N. Antiperspirant use as a risk factor for breast cancer in Iraq. Eastern Mediterranean Health Journal 2006; 12(3–4):478–482. [PubMed Abstract]
# # #

Páginas de Internet y materiales relacionados del Instituto Nacional del Cáncer:

Hoja informativa Evaluating Health Information on the Internet
Lo que usted necesita saber sobre™ el cáncer de seno
¿En qué podemos ayudarle?

Ofrecemos amplia información de cáncer basada en la investigación para pacientes y familiares, para profesionales médicos, investigadores oncológicos, promotores y para el público en general.

Llame al Servicio de Información Sobre el Cáncer del Instituto Nacional del Cáncer al 1–800–422–6237 (1–800–4–CANCER)
Visítenos en http://www.cancer.gov/espanol o http://www.cancer.gov
Envíe su correo electrónico a nciespanol@mail.nih.gov
Solicite publicaciones por medio de http://www.cancer.gov/publications o llame al 1–800–422–6237 (1–800–4–CANCER)
Obtenga ayuda para dejar de fumar en 1–877–448–7848 (1–877–44U–QUIT)
Este texto puede copiarse o usarse con toda libertad. Sin embargo, agradeceremos que se dé reconocimiento al Instituto Nacional del Cáncer como creador de esta información. El material gráfico puede ser propiedad del artista o del editor por lo que tal vez sea necesaria su autorización para poder usarlo.

Radiofrequency (RF) Radiation

Radiofrequency (RF) Radiation

(Includes RF from broadcast antennas, portable radio systems, microwave antennas, satellite, and radar) 



Kelly Classic, Certified Medical Physicist
Electromagnetic radiation consists of waves of electric and magnetic energy moving together (that is, radiating) through space at the speed of light. Taken together, all forms of electromagnetic energy are referred to as the electromagnetic spectrum. Radio waves and microwaves emitted by transmitting antennas are one form of electromagnetic energy. Often the term electromagnetic field or radiofrequency (RF) field may be used to indicate the presence of electromagnetic or RF energy.

An RF field has both an electric and a magnetic component (electric field and magnetic field), and it is often convenient to express the intensity of the RF environment at a given location in terms of units specific for each component. For example, the unit "volts per meter" (V/m) is used to measure the strength of the electric field and the unit "amperes per meter" (A/m) is used to express the strength of the magnetic field.
RF waves can be characterized by a wavelength and a frequency. The wavelength is the distance covered by one complete cycle of the electromagnetic wave, while the frequency is the number of electromagnetic waves passing a given point in one second. The frequency of an RF signal is usually expressed in terms of a unit called the hertz (Hz). One Hz equals one cycle per second. One megahertz (MHz) equals one million cycles per second. Different forms of electromagnetic energy are categorized by their wavelengths and frequencies. The RF part of the electromagnetic spectrum is generally defined as that part of the spectrum where electromagnetic waves have frequencies in the range of about 3 kilohertz (3 kHz) to 300 gigahertz (300 GHz).
 
Probably the most important use for RF energy is in providing telecommunications services. Radio and television broadcasting, cellular telephones, radio communications for police and fire departments, amateur radio, microwave point-to-point links, and satellite communications are just a few of the many telecommunications applications. Microwave ovens are a good example of a noncommunication use of RF energy. Other important noncommunication uses of RF energy are radar and for industrial heating and sealing. Radar is a valuable tool used in many applications from traffic enforcement to air traffic control and military applications. Industrial heaters and sealers generate RF radiation that rapidly heats the material being processed in the same way that a microwave oven cooks food. These devices have many uses in industry, including molding plastic materials, gluing wood products, sealing items such as shoes and pocketbooks, and processing food products.

The quantity used to measure how much RF energy is actually absorbed in a body is called the specific absorption rate (SAR). It is usually expressed in units of watts per kilogram (W/kg) or milliwatts per gram (mW/g). In the case of whole-body exposure, a standing human adult can absorb RF energy at a maximum rate when the frequency of the RF radiation is in the range of about 80 and 100 MHz, meaning that the whole-body SAR is at a maximum under these conditions (resonance). Because of this resonance phenomenon, RF safety standards are generally most restrictive for these frequencies.
Biological effects that result from heating of tissue by RF energy are often referred to as "thermal" effects. It has been known for many years that exposure to very high levels of RF radiation can be harmful due to the ability of RF energy to rapidly heat biological tissue. This is the principle by which microwave ovens cook food. Tissue damage in humans could occur during exposure to high RF levels because of the body's inability to cope with or dissipate the excessive heat that could be generated. Two areas of the body, the eyes and the testes, are particularly vulnerable to RF heating because of the relative lack of available blood flow to dissipate the excessive heat load. At relatively low levels of exposure to RF radiation, that is, levels lower than those that would produce significant heating, the evidence for harmful biological effects is ambiguous and unproven. Such effects have sometimes been referred to as "nonthermal" effects. It is generally agreed that further research is needed to determine the effects and their possible relevance, if any, to human health.

In general, however, studies have shown that environmental levels of RF energy routinely encountered by the general public are typically far below levels necessary to produce significant heating and increased body temperature. However, there may be situations, particularly workplace environments near high-powered RF sources, where recommended limits for safe exposure of human beings to RF energy could be exceeded. In such cases, restrictive measures or actions may be necessary to ensure the safe use of RF energy.
Some studies have also examined the possibility of a link between RF and microwave exposure and cancer. Results to date have been inconclusive. While some experimental data have suggested a possible link between exposure and tumor formation in animals exposed under certain specific conditions, the results have not been independently replicated. In fact, other studies have failed to find evidence for a causal link to cancer or any related condition. Further research is underway in several laboratories to help resolve this question.

In 1996, the World Health Organization (WHO) established a program called the International EMF Project that is designed to review the scientific literature concerning biological effects of electromagnetic fields, identify gaps in knowledge about such effects, recommend research needs, and work towards international resolution of health concerns over the use of RF technology. The WHO maintains a website that provides extensive information on this project and about RF biological effects and research.
Various organizations and countries have developed exposure standards for RF energy. These standards recommend safe levels of exposure for both the general public and for workers. In the United States, the Federal Communications Commission (FCC) has adopted and used recognized safety guidelines for evaluating RF environmental exposure since 1985. Federal health and safety agencies-such as the Environmental Protection Agency (EPA), the Food and Drug Administration (FDA), the National Institute for Occupational Safety and Health (NIOSH), and the Occupational Safety and Health Administration (OSHA)-have also been involved in monitoring and investigating issues related to RF exposure.

The FCC guidelines for human exposure to RF fields were derived from the recommendations of two expert organizations, the National Council on Radiation Protection and Measurements (NCRP) and the Institute of Electrical and Electronics Engineers (IEEE). Expert scientists and engineers developed both the NCRP exposure criteria and the IEEE standard after extensive reviews of the scientific literature related to RF biological effects. The exposure guidelines are based on thresholds for known adverse effects, and they incorporate appropriate margins of safety. Many countries in Europe and elsewhere use exposure guidelines developed by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The ICNIRP safety limits are generally similar to those of the NCRP and IEEE, with a few exceptions.

The NCRP, IEEE, and ICNIRP exposure guidelines state the threshold level at which harmful biological effects may occur, and the values for maximum permissible exposure (MPE) recommended for electric and magnetic field strength and power density in both documents are based on this threshold level. The threshold level is a SAR value for the whole body of 4 watts per kilogram (4 W/kg). The most restrictive limits on whole-body exposure are in the frequency range of 30-300 MHz where the RF energy is absorbed most efficiently when the whole body is exposed. For devices that only expose part of the body, such as mobile phones, different exposure limits are specified.
Major RF transmitting facilities under the jurisdiction of the FCC-such as radio and television broadcast stations, satellite-earth stations, experimental radio stations, and certain cellular, PCS, and paging facilities-are required to undergo routine evaluation for RF compliance whenever an application is submitted to the FCC for construction or modification of a transmitting facility or renewal of a license. Failure to comply with the FCC's RF exposure guidelines could lead to the preparation of a formal Environmental Assessment, possible Environmental Impact Statement, and eventual rejection of an application.

Broadcast Antennas 

Radio and television broadcast stations transmit their signals via RF electromagnetic waves. Broadcast stations transmit at various RF frequencies, depending on the channel, ranging from about 550 kHz for AM radio up to about 800 MHz for some UHF television stations. Frequencies for FM radio and VHF television lie in between these two extremes. Operating powers can be as little as a few hundred watts for some radio stations or up to millions of watts for certain television stations. Some of these signals can be a significant source of RF energy in the local environment, and the FCC requires that broadcast stations submit evidence of compliance with FCC RF guidelines. 

The amount of RF energy to which the public or workers might be exposed as a result of broadcast antennas depends on several factors, including the type of station, design characteristics of the antenna being used, power transmitted to the antenna, height of the antenna and distance from the antenna. Since energy at some frequencies is absorbed by the human body more readily than energy at other frequencies, the frequency of the transmitted signal as well as its intensity is important.

Public access to broadcasting antennas is normally restricted so individuals cannot be exposed to high-level fields that might exist near antennas. Measurements made by the FCC, EPA, and others have shown that ambient RF radiation levels in inhabited areas near broadcasting facilities are typically well below the exposure levels recommended by current standards and guidelines. Antenna maintenance workers are occasionally required to climb antenna structures for such purposes as painting, repairs, or beacon replacement. Both the EPA and OSHA have reported that in these cases it is possible for a worker to be exposed to high levels of RF energy if work is performed on an active tower or in areas immediately surrounding a radiating antenna. Therefore, precautions must be taken to ensure that maintenance personnel are not exposed to unsafe RF fields.

Portable Radio Systems "Land-mobile" communications include a variety of communications systems that require the use of portable and mobile RF transmitting sources. These systems operate in narrow frequency bands between about 30 and 1,000 MHz. Radio systems used by the police and fire departments, radio paging services, and business radio are a few examples of these communications systems. There are essentially three types of RF transmitters associated with land-mobile systems: base-station transmitters, vehicle-mounted transmitters, and handheld transmitters. The antennas used for these various transmitters are adapted for their specific purpose. For example, a base-station antenna must radiate its signal to a relatively large area, and, therefore, its transmitter generally has to use higher power levels than a vehicle-mounted or handheld radio transmitter. Although these base-station antennas usually operate with higher power levels than other types of land-mobile antennas, they are normally inaccessible to the public since they must be mounted at significant heights above ground to provide for adequate signal coverage. Also, many of these antennas transmit only intermittently. For these reasons, such base-station antennas have generally not been of concern with regard to possible hazardous exposure of the public to RF radiation. Studies at rooftop locations have indicated that high-powered paging antennas may increase the potential for exposure to workers or others with access to such sites, for example, maintenance personnel. Transmitting power levels for vehicle-mounted land-mobile antennas are generally less than those used by base-station antennas but higher than those used for handheld units.

Handheld portable radios such as walkie-talkies are low-powered devices used to transmit and receive messages over relatively short distances. Because of the low power levels used, the intermittence of these transmissions, and the fact that these radios are held away from the head, they should not expose users to RF energy in excess of safe limits. Therefore, the FCC does not require routine documentation of compliance with safety limits for push-to-talk two-way radios.

Microwave Antennas Point-to-point microwave antennas transmit and receive microwave signals across relatively short distances (from a few tenths of a mile to 30 miles or more). These antennas are usually rectangular or circular in shape and are normally found mounted on a supporting tower, on rooftops, on sides of buildings, or on similar structures that provide clear and unobstructed line-of-sight paths between both ends of a transmission path or link. These antennas have a variety of uses, such as transmitting voice and data messages and serving as links between broadcast or cable TV studios and transmitting antennas. The RF signals from these antennas travel in a directed beam from a transmitting antenna to a receiving antenna, and dispersion of microwave energy outside of the relatively narrow beam is minimal or insignificant. In addition, these antennas transmit using very low power levels, usually on the order of a few watts or less. Measurements have shown that ground-level power densities due to microwave directional antennas are normally a thousand times or more below recommended safety limits. Moreover, as an added margin of safety, microwave tower sites are normally inaccessible to the general public. Significant exposures from these antennas could only occur in the unlikely event that an individual was to stand directly in front of and very close to an antenna for a period of time.

Satellite Systems
Ground-based antennas used for satellite-earth communications typically are parabolic "dish" antennas, some as large as 10 to 30 meters in diameter, that are used to transmit (uplinks) or receive (downlinks) microwave signals to or from satellites in orbit around the earth. The satellites receive the signals beamed up to them and, in turn, retransmit the signals back down to an earthbound receiving station. These signals allow delivery of a variety of communications services, including long-distance telephone service. Some satellite-earth station antennas are used only to receive RF signals (that is, just like a rooftop television antenna used at a residence) and, since they do not transmit, RF exposure is not an issue. Because of the longer distances involved, power levels used to transmit these signals are relatively large when compared, for example, to those used by the microwave point-to-point antennas discussed above. However, as with microwave antennas, the beams used for transmitting earth-to-satellite signals are concentrated and highly directional, similar to the beam from a flashlight. In addition, public access would normally be restricted at station sites where exposure levels could approach or exceed safe limits.

Radar Systems Radar systems detect the presence, direction, or range of aircraft, ships, or other moving objects. This is achieved by sending pulses of high-frequency electromagnetic fields (EMF). Radar systems usually operate at radiofrequencies between 300 megahertz (MHz) and 15 gigahertz (GHz). Invented some 60 years ago, radar systems have been widely used for navigation, aviation, national defense, and weather forecasting. People who live or routinely work around radar have expressed concerns about long-term adverse effects of these systems on health, including cancer, reproductive malfunction, cataracts, and adverse effects for children. It is important to distinguish between perceived and real dangers that radar poses and to understand the rationale behind existing international standards and protective measures used today.

The power that radar systems emit varies from a few milliwatts (police traffic-control radar) to many kilowatts (large space tracking radars). However, a number of factors significantly reduce human exposure to RF generated by radar systems, often by a factor of at least 100:
  • Radar systems send electromagnetic waves in pulses and not continuously. This makes the average power emitted much lower than the peak pulse power.
  • Radars are directional and the RF energy they generate is contained in beams that are very narrow and resemble the beam of a spotlight. RF levels away from the main beam fall off rapidly. In most cases, these levels are thousands of times lower than in the main beam.
  • Many radars have antennas which are continuously rotating or varying their elevation by a nodding motion, thus constantly changing the direction of the beam.
  • Areas where dangerous human exposure may occur are normally inaccessible to unauthorized personnel.
In addition to the information provided in this document, there are other sources of information regarding RF energy and health effects. Some states maintain nonionizing radiation programs or, at least, some expertise in this field, usually in a department of public health or environmental control. The following table lists some representative Internet websites that provide information on this topic. The Health Physics Society neither endorses nor verifies the accuracy of any information provided at these sites. They are being provided for information only.



Radiofrequency (RF) Radiation - Dangers Of Exposure

Alert
Document Type: Alert
Keycode: web only
Industry: Construction,
Division Author: Construction & Utilities
Publication Date: 07 June 2005
Date First Published: 09 May 2003
Summary: This alert warns of the dangers of exposure to excessive levels of radiofrequency from transmission devices on buildings for workers engaged in roof maintenance, façade maintenance or window cleaning, and provides guidance on preventative measures.
Radio FrequencyWorking near radio transmission devices, such as dishes and antennas typically mounted on roofs, can be dangerous or may affect health if exposure to excessive levels of radiofrequency (RF) radiation occurs.
Workers may be exposed to RF radiation if the work area on a building or structure has radio transmission devices. Workers most at risk are those involved in tasks where access is required to roof spaces containing communication transmission hardware. Such tasks include:
  • Roof maintenance
  • Window cleaning
  • Facade maintenance
Delivery, installation or maintenance of any plant or gear, or any other task where access to the roof is required.
What is RF radiation?
RF radiation, also known as EME, EMR or EMF, is low frequency radiation (less than 300 GHz) which includes microwave transmissions. The major sources of RF radiation are radio, television, mobile telephone and paging transmission antennas.
Health effects
RF radiation heats in the same way that microwave ovens heat food. Harmful heating of body tissue is a possibility where there is exposure to RF fields above the maximum recommended exposure levels. Shocks, similar to electric shocks, due to touching or receiving arcs from RF devices are also possible from over-exposure to RF radiation.
Currently there is no known link between exposure to RF radiation and an increased risk of cancer.
Responsibilities
Employers must ensure that employees, independent contractors or the general public are not exposed to RF radiation above recommended maximum levels outlined in the radiation protection standard, Maximum Exposure Levels to Radiofrequency Fields -- 3 kHz to 300 GHz published by the Australian Radiation Protection and Nuclear Safety Agency, ARPANSA (see Further Information for more details).
Any person who has management or control over the workplace, including access to and egress from the workplace must also, so far as is practicable, provide a safe workplace. This includes building owners, occupiers or building managers who control access to the roof.
No person should be able to access a roof with radio antennas without receiving training and information on the risk of any RF radiation present and the controls needed to avoid over-exposure. This is a joint responsibility of those persons who control access to the roof area and any principal contractors and subcontractors undertaking works on the roof.
How to avoid over-exposureSection 5 of the ARPANSA radiation protection standard recommends how the risk of occupational exposure may be managed. Key factors to ensure a safe workplace include:
Hazard identification / Risk assessment
  • Identify radiation sources and list the contact numbers of all companies controlling transmissions from the roof or work location.
  • Determine "NO GO" areas where maximum exposure levels may be exceeded. This may be by measurement, or on the advice of a competent person.
  • Document information on No Go Areas.
These actions of hazard identification and risk assessment need to be taken prior to workers accessing any area where RF radiation is likely.
Control measures
  • The preferred method of controlling exposure to RF radiation is to cease or power down transmissions. However, as control over the transmission signal is usually remote from the worksite, employers need to ensure that they are able to continually verify the strength of the signal during the works.
  • Develop a Safe Work Procedure (SWP) giving consideration to all identified risks, including RF radiation.
  • Induct and train all workers in the SWP.
  • Make sure that NO GO areas are sign-posted, marked or provided with physical barricades in accordance with the SWP.
  • Where workers have a need to enter a NO GO area, they should be directly supervised by a competent person who has undergone training in safely managing an RF radiation environment.
A recommended checklist for control of exposure to RF radiation is provided in Attachment 1.
RF radiation measurementAll identification, mapping and monitoring of RF radiation should be undertaken by competent persons experienced in this work. A list of companies accredited for electromagnetic emission measurements may be obtained from the National Association of Testing Authorities, Australia (NATA) (see Further Information for more details).

Acts and Regulations


Acts and regulations are available from Information Victoria on 1300 366 356 or order online at www.bookshop.vic.gov.au.
View the legislation at Victorian Law Today: www.legislation.vic.gov.au

The human body and the limits for Radio Frequency (RF) exposure.

iPhone has been tested and meets applicable limits for Radio Frequency (RF) exposure.

Specific Absorption Rate (SAR) refers to the rate at which the body absorbs RF energy. SAR limits are 1.6 Watts per Kilogram (over a volume containing a mass of 1 gram of tissue) in countries that follow the United States FCC limit and 2.0 W/Kg (averaged over 10 grams of tissue) in countries that follow the Council of the European Union limit. During testing, iPhone radios are set to their highest transmission levels and placed in positions that simulate use against the head, with no separation, and near the body, with 10 mm separation.

To reduce exposure to RF energy, use a hands-free option, such as the built-in speakerphone, the supplied headphones, or other similar accessories. Carry iPhone at least 10 mm away from your body to ensure exposure levels remain at or below the as-tested levels. Cases with metal parts may change the RF performance of the device, including its compliance with RF exposure guidelines, in a manner that has not been tested or certified.

SAR values for this device are available at: www.apple.com/legal/rfexposure/iPhone4,1/en/

Although this device has been tested to determine SAR in each band of operation, not all bands are available in all areas. Bands are dependent on your service provider’s wireless and roaming networks